Contents
Ejercicio 2
A=[4 -2 -10; 2 10 -12; -4 -6 16] b=[-10, 32, -16]' x=A\b %x=[2 4 1]' z=A*x %Comprobacion de la solucion
A = 4 -2 -10 2 10 -12 -4 -6 16 b = -10 32 -16 x = 2.0000 4.0000 1.0000 z = -10.0000 32.0000 -16.0000
Ejercicio 4
B=[0 1 -1; -6 -11 6; -6 -11 5] [V D]=eig(B) %V matriz de autovectores en columna %D matriz diagonal con los autovalores (-1 -2 -3)
B = 0 1 -1 -6 -11 6 -6 -11 5 V = 0.7071 -0.2182 -0.0921 0.0000 -0.4364 -0.5523 0.7071 -0.8729 -0.8285 D = -1.0000 0 0 0 -2.0000 0 0 0 -3.0000
Ejercicio 5
C=[1.5+2j -0.35+1.2j; -0.35+1.2j 0.9-1.6j]
d=[30+40j; 20+15j]
r=C\d %Tensiones V1=19.5229 - 6.0393i y V2=10.2354 + 6.4838i
C = 1.5000 + 2.0000i -0.3500 + 1.2000i -0.3500 + 1.2000i 0.9000 - 1.6000i d = 30.0000 +40.0000i 20.0000 +15.0000i r = 19.5229 - 6.0393i 10.2354 + 6.4838i
Ejercicio 6
Torres de Hanoi uso: hanoi(N, Tini, Taux, Tdes) donde N = numero de discos (entero >0) Tini = torre inicial (caracter i.e. 'a') Taux = torre auxiliar (caracter i.e. 'b') Tdes = torre destino (caracter i.e. 'c')
%function hanoi(n, i, a, f) %if n > 0 % hanoi(n-1, i, f, a); % fprintf('mover disco %d de %c a %c\n', n, i, f); % hanoi(n-1, a, i, f); %end hanoi(5,'a','b','c')
mover disco 1 de a a c mover disco 2 de a a b mover disco 1 de c a b mover disco 3 de a a c mover disco 1 de b a a mover disco 2 de b a c mover disco 1 de a a c mover disco 4 de a a b mover disco 1 de c a b mover disco 2 de c a a mover disco 1 de b a a mover disco 3 de c a b mover disco 1 de a a c mover disco 2 de a a b mover disco 1 de c a b mover disco 5 de a a c mover disco 1 de b a a mover disco 2 de b a c mover disco 1 de a a c mover disco 3 de b a a mover disco 1 de c a b mover disco 2 de c a a mover disco 1 de b a a mover disco 4 de b a c mover disco 1 de a a c mover disco 2 de a a b mover disco 1 de c a b mover disco 3 de a a c mover disco 1 de b a a mover disco 2 de b a c mover disco 1 de a a c
Ejercicio 7
x=(0:0.5:5) %Vector x de 0 a 5 cada 0.5 y=[10 10 16 24 30 38 52 68 82 96 123] %Vector y P=polyfit(x,y,2) %P=4.0233 x^2 + 2.0107 x + 9.6783 plot(x,y,'b-x','LineWidth',1) %Dibujar x-y, azul, puntos x, grosor linea 1 title('Grafico XY') %Titulo xlabel('vector x') %Etiqueta eje x ylabel('vector y') %Etiqueta eje y legend('puntos') %Leyenda
x = Columns 1 through 7 0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 Columns 8 through 11 3.5000 4.0000 4.5000 5.0000 y = 10 10 16 24 30 38 52 68 82 96 123 P = 4.0233 2.0107 9.6783

Ejercicio 8
%a figure wt=(0:0.05:3*pi); v=120*sin(wt); i=100*sin(wt-pi/4); subplot(2, 2, 1) plot(wt,v,wt,i) %b p=v.*i; subplot(2, 2, 2) plot(wt,p) %c fm=3 fa=fm*sin(wt); fb=fm*sin(wt-2*pi/3); fc=fm*sin(wt-4*pi/3); subplot(2, 2, 3) plot(wt,fa,wt,fb,wt,fc) %d fr=3 theta=linspace(0,2*pi); x=fr*cos(theta); y=fr*sin(theta); subplot(2, 2, 4) plot(x,y)
fm = 3 fr = 3

Ejercicio 11
f=[1 0 -35 50 24] %Vector con los coeficientes de la ecuacion roots(f) %Raices de la ecuacion %Solucion: -6.491 , 4.8706, 2, -0.3796 %%Ejercicio 12 %function ode %[t, yy] = ode45(@HalfSine, [0 35], [1 0], [ ], 0.15); %plot(t, yy(:,1)) %function y = HalfSine(t, y, z) %h = sin(pi*t/5).*(t<=5); %y = [y(2); -2*z*y(2)-y(1)+h]; ejemploode
f = 1 0 -35 50 24 ans = -6.4910 4.8706 2.0000 -0.3796

Ejercicio 13
%a k = 5; m = 10; fo = 10; Bo = 2.5; N = 2^m; T = 2^k/fo; ts = (0:N-1)*T/N; df = (0:N/2-1)/T; SampledSignal = Bo*sin(2*pi*fo*ts)+Bo/2*sin(2*pi*fo*2*ts); An = abs(fft(SampledSignal, N))/N; figure plot(df, 2*An(1:N/2)) %b k = 5; m = 10; fo = 10; N = 2^m; T = 2^k/fo; ts = (0:N-1)*T/N; df = (0:N/2-1)/T; SampledSignal = exp(-2*ts).*sin(2*pi*fo*ts); An = abs(fft(SampledSignal, N))/N; figure plot(df, 2*An(1:N/2)) %c k = 5; m = 10; fo = 10; N = 2^m; T = 2^k/fo; ts = (0:N-1)*T/N; df = (0:N/2-1)/T; SampledSignal = sin(2*pi*fo*ts+5*sin(2*pi*(fo/10)*ts)); An = abs(fft(SampledSignal, N))/N; figure plot(df, 2*An(1:N/2)) %d k = 5; m = 10; fo = 10; N = 2^m; T = 2^k/fo; ts = (0:N-1)*T/N; df = (0:N/2-1)/T; SampledSignal = sin(2*pi*fo*ts-5*exp(-2*ts)); An = abs(fft(SampledSignal, N))/N; figure plot(df, 2*An(1:N/2))




Ejercicio 14
A = imread('WindTunnel.jpg', 'jpeg'); image(A) figure row=200 red = A(row, :, 1); gr = A(row, :, 2); bl = A(row, :, 3); plot(red, 'r'); hold on plot(gr, 'g'); plot(bl, 'b'); hold off
row = 200

